Streaming media

Streaming media is multimedia that is constantly received by and presented to an end-user while being delivered by a streaming provider.[note 1] The name refers to the delivery method of the medium rather than to the medium itself. The distinction is usually applied to media that are distributed over telecommunications networks, as most other delivery systems are either inherently streaming (e.g., radio, television) or inherently non-streaming (e.g., books, video cassettes, audio CDs). The verb 'to stream' is also derived from this term, meaning to deliver media in this manner. Internet television is a commonly streamed medium.

Live streaming, delivering live over the Internet, involves a camera for the media, an encoder to digitize the content, a media publisher, and a content delivery network to distribute and deliver the content.

Contents

History

Attempts to display media on computers date back to the earliest days of computing in the mid-20th century. However, little progress was made for several decades, primarily due to the high cost and limited capabilities of computer hardware.

From the late 1980s through the 1990s, consumer-grade personal computers became powerful enough to display various media. The primary technical issues related to streaming were:

However, computer networks were still limited, and media was usually delivered over non-streaming channels, such as by downloading a digital file from a remote server and then saving it to a local drive on the end user's computer or storing it as a digital file and playing it back from CD-ROMs.

During the late 1990s and early 2000s, Internet users saw:

Severe Tire Damage was the first band to perform live on the Internet. On June 24, 1993, the band was playing a gig at Xerox PARC while elsewhere in the building, scientists were discussing new technology (the Mbone) for broadcasting on the Internet using multicasting. As proof of their technology, the band was broadcast and could be seen live in Australia and elsewhere.

RealNetworks were also pioneers in the streaming media markets and broadcast one of the earlier audio events over the Internet - a baseball game between the Yankees and Seattle Mariners - in 1995.[1] They went on to launch the first streaming video technology in 1997.

These advances in computer networking combined with powerful home computers and modern operating systems made streaming media practical and affordable for ordinary consumers. Stand-alone Internet radio devices emerged to offer listeners a no-computer option for listening to audio streams.

In general, multimedia content has a large volume, so media storage and transmission costs are still significant. To offset this somewhat, media are generally compressed for both storage and streaming.

Increasing consumer demand for streaming of high definition (HD) content to different devices in the home has led the industry to develop a number of technologies, such as Wireless HD or ITU-T G.hn, which are optimized for streaming HD content without forcing the user to install new networking cables.

Increasing consumer demand for live streaming has prompted YouTube to implement their new Live Streaming service to users.[2]

A media stream can be streamed either live or on demand. Live streams are generally provided by a means called true streaming. True streaming sends the information straight to the computer or device without saving the file to a hard disk. On Demand streaming is provided by a means called progressive streaming or progressive download. Progressive streaming saves the file to a hard disk and then is played from that location. On Demand streams are often saved to hard disks and servers for extended amounts of time; while the live streams are only available at one time only (e.g. during the Football game).[3]

Streaming bandwidth and storage

A broadband speed of 2.5 Mbit/s or more is recommended for streaming movies, for example to an Apple TV, Google TV or a Sony TV Blu-ray Disc Player, 10 Mbit/s for High Definition content.[4]

Streaming media storage size is calculated from the streaming bandwidth and length of the media using the following formula (for a single user and file):

storage size (in mebibytes) = length (in seconds) × bit rate (in bit/s) / (8 × 1024 × 1024)[note 2]

Real world example:

One hour of video encoded at 300 kbit/s (this is a typical broadband video as of 2005 and it is usually encoded in a 320 × 240 pixels window size) will be:

(3,600 s × 300,000 bit/s) / (8×1024×1024) requires around 128 MiB of storage.

If the file is stored on a server for on-demand streaming and this stream is viewed by 1,000 people at the same time using a Unicast protocol, the requirement is:

300 kbit/s × 1,000 = 300,000 kbit/s = 300 Mbit/s of bandwidth

This is equivalent to around 135 GB per hour. Using a multicast protocol the server sends out only a single stream that is common to all users. Hence, such a stream would only use 300 kbit/s of serving bandwidth. See below for more information on these protocols.

The calculation for Live streaming is similar.

Assumptions: speed at the encoder, is 500 kbit/s.

If the show lasts for 3 hours with 3,000 viewers, then the calculation is:

Number of MiB transferred = encoder speed (in bit/s) × number of seconds × number of viewers / (8*1024*1024)
Number of MiB transferred = 500,000 (bit/s) × 3 × 3,600 ( = 3 hours) × 3,000 (nbr of viewers) / (8*1024*1024) = 1,931,190 MiB

Codec, bitstream, transport, control

The audio stream is compressed using an audio codec such as MP3, Vorbis or AAC.

The video stream is compressed using a video codec such as H.264 or VP8.

Encoded audio and video streams are assembled in a container bitstream such as FLV, WebM, ASF or ISMA.

The bitstream is delivered from a streaming server to a streaming client using a transport protocol, such as MMS or RTP.

The streaming client may interact with the streaming server using a control protocol, such as MMS or RTSP.

Protocol issues

Designing a network protocol to support streaming media raises many issues, such as:

See also

Notes

Footnotes

  1. ^ The term "presented" is used in this article in a general sense that includes audio or video playback.
  2. ^ 1 mebibyte = 8 × 1024 × 1024 bits.

Citations

  1. ^ "RealNetworks Inc.". Funding Universe. http://www.fundinguniverse.com/company-histories/RealNetworks-Inc-Company-History.html. Retrieved 2011-07-23. 
  2. ^ Josh Lowensohn (2008). "YouTube to Offer Live Streaming This Year". http://news.cnet.com/8301-17939_109-9883062-2.html. Retrieved 2011-07-23. 
  3. ^ Grant and Meadows. (2009). Communication Technology Update and Fundamentals 11th Edition. pp.114
  4. ^ Mimimum requirements for Sony TV Blu-ray Disc Player, on advertisement attached to a NetFlix DVD
  5. ^ Ch. Z. Patrikakis, N. Papaoulakis, Ch. Stefanoudaki, M. S. Nunes, “Streaming content wars: Download and play strikes back” presented at the Personalization in Media Delivery Platforms Workshop, [218 – 226], Venice, Italy, 2009.
  6. ^ Krasic, C. and Li, K. and Walpole, J., The case for streaming multimedia with TCP, Lecture Notes in Computer Science, pages 213--218, Springer, 2001

Further reading

External links